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Abstract The quantitative structure-property relationship
approach was performed to study the relative fluorescence
intensity ratio (R) of Eu(DBM)3Phen (DBM—dibenzoyl-
methane, Phen—1,10-phenanthroline) in 34 different sol-
vents. The multilinear regression analysis and artificial
neural networks were employed to develop linear and
nonlinear models, respectively. The proposed linear model
contains six descriptors, with the squared correlation
coefficient r2=0.955 and the standard error of estimation
s=1.02. Better predictive results were obtained from the
nonlinear model, with r2=0.987 and s=0.51. The descrip-
tors involved in the models were discussed in detail too.

Keywords QSPR . Eu(DBM)3Phen . Relative fluorescence
intensity ratio .Multilinear regression analysis .
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Introduction

Lanthanide complexes have been well known to give bright
emission under ultraviolet irradiation because of the
effective energy transfer from ligands to central ions (an
antenna effect) and have been found in some applications
such as in optical devices, luminescence probes in
biomedical assays, fluorescent and electroluminescent
lighting devices [1–5]. The emission properties of this
family of complexes are notable and cover an exceptionally
wide spectral range: near-infrared (Nd3+, Er3+, Pr3+), red
(Eu3+, Pr3+, Sm3+), green (Er3+, Tb3+), and blue (Tm3+, Ce3+)
[6]. In particular, europium and terbium β-diketonate
complexes have been extensively studied [7–11] due to
their high fluorescence efficiency. Lanthanide complexes
are widely used as solutes or dopants in various host
compounds [3, 5, 12–14]. However, the local structure and
composition surrounding lanthanide complexes strongly
influence the fluorescent properties, such as relative
intensity, quantum yield and luminescent life decay. Thus,
it is of great importance to investigate the relationships
between the fluorescent properties of lanthanide complexes
and the molecular structures of host compounds.

The quantitative structure-property relationship (QSPR)
has become an important area of research in cheminfor-
matics. The QSPR approach is based on the assumption
that the variation of the behavior of the compounds, as
expressed by any measured physicochemical properties,
can be correlated with changes in molecular features of the
compounds termed descriptors [15, 16]. The advantage of
this approach lies in the fact that it requires only the
knowledge of the chemical structure and is not dependent
on any experimental properties. Once a correlation is
established, it can be applicable for the prediction of the
property of new compounds that have not been synthesized
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or found. Thus the QSPR approach can expedite the
process of development of new molecules and materials
with desired properties. Furthermore, some insights into the
chemical, physical and physicochemical phenomena related
to the property under investigation could be obtained by
interpreting the descriptors in the correlation.

Using the QSPR approach, many attempts have success-
fully been made to study the spectral properties of various
systems [16–20]. Shi et al. [18] performed the QSPR study
for the modeling of fluorescence wavelengths of fluores-
cence probes using heuristic method and radial basis
function neural networks. Nantasenamat et al. [19] inves-
tigated the prediction of the excitation and emission
maxima of green fluorescent protein chromophores using
an artificial neural network. Li et al. [20] developed
successful linear and nonlinear QSPR methods to predict
the fluorescence excitation wavelengths of boronic acid-
based fluorescent biosensors. But to our knowledge, there
are no examples of QSPR studies on fluorescent properties
of lanthanide complexes in different solvents.

The goal of the present work is (1) to model the relative
fluorescence intensity ratio of Eu(DBM)3Phen in different
solvents, (2) to discover the main structural factors of
solvents that affect this property significantly.

Materials and methods

Eu(DBM)3Phen was synthesized according to the literature
[21] and its molecular structure is shown in Fig. 1. The IR
spectrum of Eu(DBM)3Phen was measured on a Nicolet170
SX fourier transform infrared spectrophotometer using the
KBr pellet technique. Absorptions corresponding to func-
tional groups can be found in the spectrum, such as C=O
group at 1,595.1 cm−1, Phen group at 1,549.9 cm−1, C=C
group in the enol structure at 1,517.9 cm−1 and Eu–O group
at 511.6 cm−1. The elemental analysis was performed using
an Elementar Vario EL-III elemental analyzer. EuC57H44O6

N2 (1,004.93): calcd. C 68.12, H 4.41, N 2.79; found C
68.14, H 4.07, N 2.78. Solutions of Eu(DBM)3Phen in 34
different solvents (0.005 mol/l) were prepared. The fluores-
cence emission spectra were recorded on a Shimadzu RF-
5301PC (Japan) spectrofluorophotometer. The emission
peaks centered at 591 and 613 nm can be assigned to
5D0→

7F1 and 5D0→
7F2, respectively. The

5D0→
7F1 transi-

tion is usually used as a reference, because it is allowed by
magnetic dipole and its intensity is independent of the local
environment. The 5D0→

7F2 transition is allowed by induced
electric dipole mechanisms, and its intensity strongly
depends on the chemical environment in which Eu3+ ions
are located. Therefore, the variation of the relative intensity
ratio (R) of the 5D0→

7F2 to 5D0→
7F1 transition is very

sensitive to the structural change in the vicinity of Eu3+ ions,
which can be commonly used to reflect the local structure
and composition of Eu3+ ions [22, 23]. The R values derived
from the fluorescence spectra were listed in Table 1.

The structures of all solvent molecules were preoptimized
using MM + molecular mechanics method (Polak–Ribiere
algorithm) bymeans of the HYPERCHEM program [24]. The
final geometries of the minimum energy conformation were
obtained by the semi-empirical AM1 method using a
gradient norm limit of 0.01 kcal·Å/mol. Then totally 1664
molecular descriptors for each solvent were computed on the
minimal energy conformation through Dragon software [25].
These descriptors are classified as (a) 0D-constitutional
(atom and group counts); (b) 1D-functional groups and atom
centered fragments; (c) 2D-topological, BCUTs, walk and
path counts, autocorrelations, connectivity indices, informa-
tion indices, topological charge indices, and eigenvalue-
based indices; and (d) 3D-Randic molecular profiles from the
geometry matrix, geometrical, WHIM, and GETAWAY
descriptors. In order to reduce redundant and non-useful
information, constant or near constant values and descriptors
found to be highly correlated pairwise (one of any two
descriptors with a correlation greater than 0.99 [26]) were
excluded in a pre-reduction step. Thus 678 molecular
descriptors underwent subsequent descriptor selection.

Linear QSPR models were developed by applying
stepwise multilinear regression analysis (MLRA) with
Leave-One-Out (LOO) cross-validation to the data set. F-
to-enter and F-to-remove were 4 and 3, respectively. The
quality of the models was measured with the squared
correlation coefficient r2, the adjusted r2, the cross-
validated r2, the F ratio values, the standard error of
estimation s and the significance level value p. The adjusted
r2 is calculated using the following formula:

r2adj ¼ 1� N � 1

N �M � 1

� �
r2

� �
ð1Þ

where N is the number of the samples and M is the number
of descriptors involved in the correlation. The adjusted r2 isFig. 1 The chemical structure of Eu(DBM)3Phen
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a better measure of the proportion of variance in the data
explained by the correlation than r2 (especially for
correlations developed using small datasets) because r2 is
somewhat sensitive to changes in N and M. The adjusted r2

corrects for the artificiality introduced when M approaches
N through the use of a penalty function which scales the
result. A variance inflation factor (VIF) was calculated to
test if multicollinearities existed among the descriptors,
which is defined as

VIF ¼ 1

1� r2j
ð2Þ

where r2j is the squared correlation coefficient between the
jth coefficient regressed against all the other descriptors in
the model. Models would not be accepted if they contain
descriptors with VIFs above a value of five [27].

The proposed model was also checked for reliability and
robustness by randomization tests: new models were
recalculated for randomly reordered R values. The resulting
models obtained on the data set with randomized R values
should have significantly lower r2 values than the proposed
one because the relationship between the structure and
property is broken. This is proof of the proposed model’s
validity as it can be reasonably excluded that the originally
proposed model was obtained by chance correlation.

The nonlinear model was then developed by submitting
the selected descriptors from MLRA to a three-layer, fully
connected, feed-forward ANN. The number of input
neurons was equal to that of the descriptors in the linear
model. The number of hidden neurons was optimized by
trial and error procedure on calculations of the training
process. One output neuron was used to represent the
experimental R. The network was trained using the quasi-
Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm [28]. To avoid overtraining, one tenth data from the
data set were randomly selected as separate validation set to
monitor the training process; that is, during the training of
the network the performance was monitored by predicting
the values for the systems in the validation set. When the
results for the validation set ceased to improve, the training
was stopped.

Results and discussion

Stepwise MLRA with LOO cross-validation was used to
select the descriptors for the best model and the number of

Table 1 Experimental and predicted R values of Eu(DBM)3Phen in
different solvents

Solvents R(expt.) MLRA ANNs

R(pred.) ΔR a R(pred.) ΔR a

1,2-Divinylbenzene 9.57 9.34 0.23 9.61 −0.05
1,4-Butyrolactone 9.55 13.25 −3.71 10.73 −1.18
1,4-Dioxane 15.97 16.30 −0.34 15.84 0.13
4-Methyl-2-
pyrrolidinone

16.74 16.02 0.72 16.68 0.05

Acetone 16.29 16.33 −0.05 15.85 0.44
Acetylacetone 11.78 12.55 −0.77 10.55 1.23
Acrylonitrile 15.62 16.39 −0.76 15.88 −0.25
Anisole 15.22 15.82 −0.60 15.75 −0.52
Bromobenzene 14.62 14.59 0.03 15.33 −0.71
Butyl acrylate 16.02 15.37 0.65 15.60 0.43
Butyl methacrylate 15.43 15.15 0.28 15.53 −0.11
Carbon tetrachloride 15.36 15.11 0.25 15.37 −0.01
Cyclopentanone 15.26 13.72 1.54 15.01 0.25
Dibutyl phthalate 13.46 13.00 0.46 13.44 0.02
Dichloromethane 15.47 15.99 −0.52 15.70 −0.23
Dimethyl phthalate 15.12 16.32 −1.20 15.13 −0.01
Dimethyl sulfoxide 16.33 15.94 0.39 15.67 0.65
Ethyl acrylate 16.46 15.35 1.11 15.64 0.82
Ethyl propionate 16.21 15.26 0.95 15.61 0.60
Isobutanoic acid 3.30 3.32 -0.03 3.28 0.01
Lactic acid 2.78 3.56 −0.79 2.78 −0.01
Methacrylic acid 3.80 3.68 0.12 2.82 0.97
Methyl methacrylate 15.70 15.44 0.26 15.65 0.05
m-Xylene 15.22 14.94 0.28 15.57 −0.35
N,N-
Dimethylformamide

18.64 19.36 −0.72 18.67 −0.03

n-Octylic acid 2.90 2.21 0.69 2.91 −0.01
Phenyl methanol 14.75 15.35 −0.61 15.55 −0.81
p-Xylene 15.26 15.63 −0.36 15.70 −0.44
Styrene 14.94 15.12 −0.18 15.47 −0.52
Tetrahydrofuran 16.22 15.35 0.87 15.45 0.77
Toluene 15.73 15.61 0.12 15.70 0.03
Tributylphosphate 18.44 17.43 1.01 18.37 0.07
Trichloromethane 15.30 15.56 −0.26 15.53 −0.23
Vinyl acetate 15.59 14.68 0.91 15.52 0.07

aΔR = R(expt.) − R(pred.)

Fig. 2 r2 and s vs. number of latent descriptors in the best MLRA
models
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descriptors in the final model was determined on the basis
of the data set size and on the basis of the r2, the adjusted
r2, the cross-validated r2, the F, the s and the p. The r2 and s
results during the stepwise MLRA are shown in Fig. 2. It is
clear that univariant correlations between R and the
different descriptors have poor r2 and s values. This
indicates that R is not linearly correlated with any of the

molecular descriptors. The equation with seven descriptors
has the best r2 and s values. However, from a statistical
viewpoint the ratio of the number of the samples (N) and
the number of descriptors in the correlation (M) should not
be too low. Usually, it is recommended that N/M≥5. In the
situation of this study, with 34 samples, six descriptors were
selected. The final correlation equation is as the following:

R ¼ 16:408þ 2:692� EEig10d� 4:725�EEi11d� 19:850� JG13� 0:690� RDF030p� 12:570� nRCOOHþ 2:966� N � 072

N ¼ 34; r ¼ 0:977; r2 ¼ 0:955; rCV2 ¼ 0:944; r2adj ¼ 0:945; F ¼ 95:13; s ¼ 1:02

ð3Þ

Here EEig10d is the eigenvalue 10 from edge adjacency
matrix weighted by dipole moments; EEig11d is the
eigenvalue 11 from edge adjacency matrix weighted by
dipole moments; JGI3 is the mean topological charge index
of order 3; RDF030p is the Radial Distribution Function—
3.0/weighted by atomic polarizabilities; nRCOOH is the
number of carboxylic acids (aliphatic); and N-072 corre-
sponds to the number of N atoms in RCO-N< or >N-X = X,
respectively.

In general, the larger the magnitude of the F ratio, the
better the model predicts the property values in the data set.
The large F ratio of 95.13 indicates that Eq. 3 does an
excellent job of predicting the R values. Eq. 3 has an
adjusted r2 value of 0.945, which indicates very good
agreement between the correlation and the variation in the
data. The cross-validated correlation coefficient r2CV ¼
0:955 illustrates the stability of the model by focusing on
the sensitivity of the model to the elimination of any single

data point. The most predictive model with r2=0.794 is
obtained using randomization test, which proves the reality
of Eq. 3. The characteristics and interactions of the six
descriptors are given in Tables 2 and 3. The t-values
indicate that all the descriptors are highly significant. The
VIF values and the interactions suggest that these descrip-
tors are weakly correlated with each other. Thus, the model
can be regarded as an optimal regression equation. The
predicted results for the R values from Eq. 3 are shown in
Table 1 and Fig. 3.

According to the t-values (in Table 2), the most
important descriptor in Eq. 3 is nRCOOH. The coefficient
for this descriptor is negative, meaning that solvents with
carboxylic acids would decrease the R values. The
contribution of this descriptor to the R values is in
agreement with the contribution that one could expect for
the interactions between Eu3+ and carboxylic acids. The
EEig10d and EEig11d descriptors encode information about

Table 2 Characteristics of
descriptors in the final MLRA
model

Descriptor Descriptor type SE t-value p-level VIF

Constant 0.314 52.233 0.000
EEig10d Edge adjacency indices 0.513 5.250 0.000 1.089
EEig11d Edge adjacency indices 0.888 -5.320 0.000 1.477
JGI3 Topological charge indices 4.925 -4.031 0.000 1.182
RDF030p RDF descriptors 0.242 -2.854 0.008 1.494
nRCOOH Functional group counts 0.567 -22.160 0.000 1.091
N-072 Atom-centered fragments 0.776 3.823 0.001 1.088

Table 3 Interactions of
descriptors and R EEig10d EEig11d JGI3 RDF030p nRCOOH N-072 R

EEig10d 1
EEig11d 0.274 1
JGI3 −0.035 −0.056 1
RDF030p −0.176 −0.533 0.189 1
nRCOOH 0.080 0.081 −0.272 −0.078 1
N-072 0.055 0.055 0.215 −0.132 −0.091 1
R 0.116 −0.184 0.093 −0.023 −0.905 0.228 1
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the dipole moment of the molecule. The emergence of
EEig10d and EEig11d in Eq. 3 indicate that the fluores-
cence and the site symmetry of Eu3+ are also influenced by
the dipole moments of solvents. The importance of the
transfers of intramolecular charge on the R values is
apparent due to the presence of JGI3 in Eq. 3. The positive
sign of the N-072 indicates that N atoms in RCO-N< or >N-
X = X groups of solvent molecules would increase the R
values. This effect is attributed to the coordination between
Eu3+ and N atoms of solvents.

RDF030p is one of the RDF descriptors which have
recently been proposed based on a radial distribution
function. The RDF descriptors can be interpreted as the
probability distribution of finding an atom in a spherical
volume of radius r. The general form of the radial
distribution function is represented by:

RDFrw ¼ f �
XnAT�1

i¼1

XnAT
j¼iþ1

wi � wj � e�bðr�rijÞ2 ð4Þ

where f is a scaling factor (assumed equal to one in the
calculations), wi and wj are characteristic properties of the
atoms i and j (including atomic number, masses, van der
Waals volumes, Sanderson electronegativities, and polar-
izabilities), rij is the interatomic distance, and nAT is the
number of atoms in the molecule [29]. RDFrw is generally
calculated at a number of discrete points with defined
intervals. Besides information about interatomic distances
in the entire molecule, the RDF030p provides further
information about atomic polarizabilities. The negative sign
of the RDF030p indicates that Eu3+ in solvents with greater
polarizabilites would have smaller R values and more
symmetric location.

Recently, there is a growing interest in the use of ANNs
for QSPR due to their inherent ability in modeling a

nonlinear problem. The ANNs are especially useful when a
rigid theoretical basis or mathematical relationship to
describe a phenomenon to be modeled is not available.
Among the neural network learning algorithms, the back-
propagation (BP) method [30] is one of the most commonly
used methods. The drawback of BP is that the training
processes slowly, because the gradient-descent algorithm is
usually used for minimizing the sum-of-squares error. In
this study, the quasi-Newton BFGS algorithm was used.
The advantages of using the BFGS algorithm are that
specifying rate or momentum is not necessary and training
processes are much more rapid [31].

The descriptors from the best MLRA model were used
as inputs to the network. The number of hidden neurons is
an important parameter influencing the performances of the
ANNs. The usual rule of thumb is that the weights and
biases should be less than the samples so that the model
achieved by the network is stationary [32]. Thus, a 6–3–1
network architecture is obtained after trial and error
procedure. The predicted results from the ANN model
were given in Table 1 and Fig. 3 (r2=0.987 and s=0.51).
LOO cross-validation has also been carried out and R2

CV of
0.985 is obtained, which indicates that there seems no
chance correlation to happen. The distributions of the
absolute errors (AEs) calculated with the MLRA and
ANN models for the data set were shown in Fig. 4. With
the MLRA model, the maximum AE is 3.71, the mean AE
is 0.64, and only 6 samples have AEs less than 0.20; while
with the ANN model, the maximum AE is 1.23, the mean
AE is 0.35, and 15 samples have AEs less than 0.20.
Evidently, these results show considerable modification in
comparison to the MLRA model, which confirms the
nonlinear relationship between structural information and
R values.

Fig. 4 Distributions of absolute errors calculated with the MLRA and
ANN models

Fig. 3 Predicted vs. experimental R values for the MLRA and ANN
models
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Conclusion

In this paper, both linear and nonlinear QSPR models are
presented for the prediction of relative fluorescence intensity
ratio of Eu(DBM)3Phen in different solvents. The predicted
results are in good agreement with experimental values.
The nonlinear model appears to be more reliable than the
linear model. Therefore, this QSPR approach should be
used as a promising tool for the prediction of relative
fluorescence intensity ratio. The corresponding descriptors
can also contribute to the fluorescent profiling of Eu
(DBM)3Phen in different solvents.
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